Keyboard Shortcuts
ctrl + shift + ? :
Show all keyboard shortcuts
ctrl + g :
Navigate to a group
ctrl + shift + f :
Find
ctrl + / :
Quick actions
esc to dismiss
Likes
- LTspice
- Messages
Search
Re: (unknown)
Helmut,
Would it be difficult to improve yourOK. What's happening is that the '+' sign can be used to mean incremented from the previous value. It's a PSpice convention useful for time points as in V2 1 0 PWL (0 0 +1m 1 +1m 0 +1m 1 +1m 0 +1m 1) But I'll turn that off for the voltage in a future version, since I don't think it should do it for the voltage, just the time. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
(No subject)
--- In LTspice@..., Arnold Esper <arnold.esper@n...>
wrote: Guten Tag,Winspice3. Hallo Arnold, hier kann fast keiner deutsch, deshalb macht es wenig Sinn die Frage zus?tzlich in deutsch zu stellen. what sort of errors is this in LT-Spice? The Schematic is computedwith LT-Spice and Winspice3 from Mike Smith.I had the same problem some times ago with a model I think. The problem here is that LTSPICE cannot interpret the '+' sign of a number. So simply remove the '+' at the beginning of any number. V1 1 0 DC 0 AC 1 PWL(0 0V 1m 0V 5m -.6V 13m .8V 17m 0V) WINSPICE and PSPICE! have no problem with the '+' sign. I didn't find any control to max Time Steps inYou have to give four parameters if you want specify a maximum time step. The command line could look in your example like this one. .TRAN 10u 20m 0 10u The other chance is a .option command line. .TRAN 20m .OPTIONS maxstep=10u Hello Mike, would it be difficult to improve your interpreter so that it correctly accepts a '+' sign? Best Regards Helmut |
(No subject)
Arnold Esper
Guten Tag,
was sind das fr Fehler in LT-Spice? Gerechnet mit LT-Spice und Winspice3. Hello, what sort of errors is this in LT-Spice? The Schematic is computed with LT-Spice and Winspice3 from Mike Smith. I didn't find any control to max Time Steps in the .trans analysis. Arnold BEGRE00 Begrenzer mit Transistoren * * * B E G R E N Z E R T R A N S I S T O R E N 0 0 . C I R * * * * Begrenzer mit Transistoren und Dioden in der Gegenkopplung * * Benutzter OPA: TL 051 * * * * 20.03.2003 Arnold Esper * * * * * * Definition der Eingangsspannung VIN zwischen Knoten 1 und 0 mit AC * * und Puls, AC mit 1VOLT, der Puls wird festgelegt durch : * * * * PULS(U1 U2 T_VERZOEGER T_ANSTIEG T_ABFALL T_WEITE T_PERIODE) * * * * U2_|_ _ ______________ ____ * * | / \ / * * | / \ / * * | / \ / * * U1-|-------- - - - - - ------------------------ * * | * * * * T_VERZ |T_AN| T_WEITE |T_AB| * * | T_PERIODE | * * * * * * Definition einer Polygonquelle (piece-wise-linear) * * * * PULS(U1 U2 T_VERZOEGER T_ANSTIEG T_ABFALL T_WEITE T_PERIODE) * * * * _|_ ______________ * * | / \ * * | / \ * * | / \ * * u0-|------- - - - - - \- - - - - - - - - - * * | \ * * | \____________________________ * * * * | | | | | * * t0 u0 t1 u1 t2 u2 t3 u3 t4 u4 * * * *V1 1 0 DC 0 AC 1 PULSE(0 .6 100u 1m 1m 1n 1s) **** Polygon-Quelle ** V1 1 0 DC 0 AC 1 PWL(0 0 1m 0V 5m -.6V 13m +.8V 17m 0V) R1 1 2 22K R2 2 4 22K R3 4 6 100K R4 6 7 22K D1 2 3 DI D2 7 5 DI Q1 3 6 7 BC550C Q2 5 4 2 BC550C *E0 7 0 0 2 100K X1 0 2 60 70 7 TL051/TI * Betriebsspannungen VP VN *** VP 60 0 DC 15 VN 70 0 DC -15 **** Analysen **** *.OPTIONS LIMPTS=10000 *.AC DEC 100 10 20000 *.PRINT AC VDB(7) .TRAN 10u 20m .PRINT TRAN V(7) *.DC V1 -1 1 0.001 *.PRINT DC V(7) .model DI D .model BC550C NPN(Is=7.049f Xti=3 Eg=1.11 Vaf=23.89 Bf=493.2 Ise=99.2f + Ne=1.829 Ikf=.1542 Xtb=1.5 Br=2.886 Isc=7.371p + Nc=1.508 Ikr=5.426 Rc=1.175 Cjc=5.5p Mjc=.3132 Vjc=.4924 Fc=.5 + Cje=11.5p Mje=.6558 Vje=.5 Tr=10n Tf=420.3p Itf=1.374 Xtf=39.42 + Vtf=10) * PHILIPS pid=bc549c case=TO92 * 91-07-31 dsq * * TL051 operational amplifier "macromodel" subcircuit * created using Parts release 4.01 on 04/12/89 at 09:57 * (REV N/A) * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt TL051/TI 1 2 3 4 5 * c1 11 12 3.988E-12 c2 6 7 15.00E-12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 2.875E6 -3E6 3E6 3E6 -3E6 ga 6 0 11 12 292.2E-6 gcm 0 6 10 99 6.542E-9 iss 3 10 dc 300.0E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 3.422E3 rd2 4 12 3.422E3 ro1 8 5 125 ro2 7 99 125 rp 3 4 11.11E3 rss 10 99 666.7E3 vb 9 0 dc 0 vc 3 53 dc 3 ve 54 4 dc 3.700 vlim 7 8 dc 0 vlp 91 0 dc 28 vln 0 92 dc 28 .model dx D(Is=800.0E-18) .model jx PJF(Is=15.00E-12 Beta=185.2E-6 Vto=-1) .ends * .END |
Re: Looking to export waveforms to *.wav
Sean,
See the examples called wavein.asc and waveout.asc in the "educational" folder and also see help files for .wave It is very cool indeed! Brad --- In LTspice@..., "sean_schouten" <sean_schouten@y...> wrote: Hi! |
Re: noise analysis
Steve,
[...]Is this a fluke? Is there any way to tell ifI'm afraid it probably was, unless noise was dominated by the resistors of your circuit. Noise doesn't appear to be modeled in the LT2018A macro model. I think the only opamp macro model that claims to model noise is the LT1028N. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
noise analysis
polapart
Thanks for the help on the Burr Brown amp.
Noise analysis is a nice feature of LTSpice. It's helpful to poke around a circuit to see where noise is being generated. However, I didn't put alot of credence into the actual predictions because of potential limitations in the SPICE models. Out of curosity, I compared the RMS noise in an actual circuit using a couple of different op amps, including the LT2078A. I found that the predicted noise was fairly close to the actual measured values. The circuit is basically DC-coupled so 1/f noise is expected to be significant. Is this a fluke? Is there any way to tell if a model will predict noise performance in general and 1/f noise in particular. Steve H. |
Re: models for triodes and pentodes
thanks Helmut, its running ok with models downloaded
from duncanamps.com thanks a lot guille --- Helmut Sennewald <helmutsennewald@...> wrote: --- In LTspice@..., Bill Lewis------------------------------------------------------------------- * This model is provided "as is", with no warranty------------------------------------------------------------------- * __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Reinier,
Sounds interesting. Could you alsoYes, the thing I have in mind would do that. Below is a list prepared for someone else who asked about this offline: I've in mind to model GBW, AOL, slew limit, voltage and current noise and corner frequencies for each(But not model noise from input impedance imbalance like from JFET input products), dynamic current draw from each rail, output voltage range, output current limit, and input bias current. That can all be modeled in the modeling methodology used in the SMPS products one one internal node. Doing the real small signal transfer above the dominate pole requires more nodes. For example, the LT1028 can be done with two more nodes. CMRR would not be particularly modeled, but it would be non-zero. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: Third party model usage - please help
--- In LTspice@..., "Helmut Sennewald"
<helmutsennewald@y...> wrote: --- In LTspice@..., "kaplounovski" <kaplounovski@y...>LTSpice. netlist.symbolLMC6484A.sub.I've downloaded their model and placed it thethe .sub6484a.sub toold DOS-based PSpice, it worked there. I'm almost sure it'ssomethingreally simple, like missing path or something, but what? Could itbethat the op-amp's subcircuit in turn includes some models, namely go work.*///////////////////////////////////////////////////////////////////// * Legal Notice: This material is intended for free software support.*//////////////////////////////////////////////////////////////////// * For ordering or technical information on these models, contact:Thank you Helmut! It works now, although when I used your model, I got the "Too few nodes: current" message. I did not use your example file because of the different file structure (paths) on my computer. All worked well though with the model I downloaded from the National site yesterday. Now I guess I know where my error was - I tried to use a ready symbol from the library whereas I should have created my own for each 'new' part I want to use. Best regards, Eugene |
Re: More on Burr Brown Models
Reinier Gerritsen
toggle quoted message
Show quoted text
-----Original Message-----
From: Panama Mike [mailto:panamatex@...] BTW, I'm thinking of introducing opamp models that use a different modeling methodology, similar to that used for LTspice's SMPS products. The result would be computationally extremely lightweight and robust models that model noise too(these PSpice- style opamp models almost never get the noise modeled). However, the opamps models would not run in other SPICE simulators and non-LT opamp models wouldn't be available. Would you folks be interested in something like that? --Mike Hi Mike, Sounds interesting. Could you also make a very simple opamp with the output voltage limited to the supply voltages? I sometimes get Mega Volts in my circuit on 1 Volt transients at the inputs. Reinier Gerritsen |
Re: Third party model usage - please help
--- In LTspice@..., "kaplounovski" <kaplounovski@y...>
wrote: --- In LTspice@..., Jim Stockton <mstech@p...> wrote:symbolkaplounovski wrote:LMC6484A.sub. withthe .sub6484a.subPrefix = X, Spice Model = LMC6484A.sub, Value = LMC6484A.sub somethingGood LuckThank you, Jim. really simple, like missing path or something, but what? Could itbe that the op-amp's subcircuit in turn includes some models, namely Hello Eugene, this is one of the two chances to include your moddel. You can see the other one in the thread about the OPA336. Sorry for my short explanations. I must immediately leave my home to go work. Put the symbol file into the LTSPICE lib\sym\opamp directory. Put the model file National.lib into LTSPICE lib\sub directory. Best Regards Helmut Test circuit file Version 4 SHEET 1 1372 1316 WIRE 320 320 320 352 WIRE 320 256 320 224 WIRE -16 368 -16 304 WIRE -16 96 80 96 WIRE 80 304 -16 304 WIRE 160 304 240 304 WIRE 160 96 240 96 WIRE 288 272 240 272 WIRE 240 272 240 96 WIRE 464 96 512 96 WIRE 512 96 512 288 WIRE 512 288 352 288 WIRE -16 480 -16 448 WIRE 240 480 240 512 WIRE 384 480 384 512 WIRE 240 592 240 624 WIRE 384 592 384 624 WIRE 512 288 544 288 WIRE 240 96 384 96 WIRE 240 304 288 304 WIRE 320 976 320 1008 WIRE 320 912 320 880 WIRE -16 752 96 752 WIRE 80 960 -16 960 WIRE 160 960 240 960 WIRE 160 752 240 752 WIRE 288 928 240 928 WIRE 240 928 240 752 WIRE 464 752 512 752 WIRE 512 752 512 944 WIRE 512 944 352 944 WIRE 512 944 544 944 WIRE 240 752 384 752 WIRE 240 960 288 960 WIRE -16 1024 -16 960 WIRE -16 1136 -16 1104 FLAG 320 224 Vcc FLAG 240 480 Vcc FLAG 384 480 Vss FLAG 320 352 Vss FLAG -16 480 0 FLAG 240 624 0 FLAG 384 624 0 FLAG 544 288 out FLAG 240 96 in- FLAG 240 304 in+ FLAG -16 96 0 FLAG 320 880 Vcc FLAG 320 1008 Vss FLAG 544 944 out1 FLAG 240 752 in1- FLAG 240 960 in1+ FLAG -16 752 0 FLAG -16 304 in FLAG -16 1136 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 240 496 R0 SYMATTR InstName V1 SYMATTR Value 5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 384 496 R0 SYMATTR InstName V2 SYMATTR Value -5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 352 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V3 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R1 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 320 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R2 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R3 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 768 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R4 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 976 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R5 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\cap 96 768 R270 WINDOW 0 32 32 VTop 0 WINDOW 3 0 32 VBottom 0 SYMATTR InstName C1 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 1008 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V4 SYMATTR Value 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\Opamps\LMC6484A 320 224 R0 SYMATTR InstName U1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\Opamps\LMC6484A 320 880 R0 SYMATTR InstName U2 TEXT -432 40 Left 0 ;.op TEXT -440 -160 Left 0 !.AC DEC 100 1 100MEG TEXT -432 -40 Left 0 ;.nodeset V(out)=2 V(in-)=1 V(in+)=1 TEXT -432 -8 Left 0 ;.nodeset V(out1)=0 V(in1-)=0 V(in1+)=0 TEXT -432 -88 Left 0 ;.OPTIONS gmin=1e-10 noopiter=1 Symbol file LMC6484AA.asy Version 4 SymbolType CELL LINE Normal -32 32 32 64 LINE Normal -32 96 32 64 LINE Normal -32 32 -32 96 LINE Normal -28 48 -20 48 LINE Normal -28 80 -20 80 LINE Normal -24 84 -24 76 LINE Normal 0 32 0 48 LINE Normal 0 96 0 80 LINE Normal 4 44 12 44 LINE Normal 8 40 8 48 LINE Normal 4 84 12 84 WINDOW 0 16 32 Left 0 WINDOW 3 16 96 Left 0 SYMATTR Value LMC6484A/NS SYMATTR Prefix X SYMATTR SpiceModel National.lib SYMATTR Value2 LMC6484A/NS SYMATTR Description CMOS Operational Amplifier PIN -32 80 NONE 0 PINATTR PinName In+ PINATTR SpiceOrder 1 PIN -32 48 NONE 0 PINATTR PinName In- PINATTR SpiceOrder 2 PIN 0 32 NONE 0 PINATTR PinName V+ PINATTR SpiceOrder 3 PIN 0 96 NONE 0 PINATTR PinName V- PINATTR SpiceOrder 4 PIN 32 64 NONE 0 PINATTR PinName OUT PINATTR SpiceOrder 5 File national.lib * National Semiconductor, Inc. *///////////////////////////////////////////////////////////////////// * Legal Notice: This material is intended for free software support. * The file may be copied, and distributed; however, reselling the * material is illegal *//////////////////////////////////////////////////////////////////// * For ordering or technical information on these models, contact: * National Semiconductor's Customer Response Center * 7:00 A.M.--7:00 P.M. U.S. Central Time * (800) 272-9959 * For Applications support, contact the Internet address: * amps-apps@... *////////////////////////////////////////////////////////// *LMC6484A CMOS Quad OP-AMP MACRO-MODEL *////////////////////////////////////////////////////////// * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | * | | | | | .SUBCKT LMC6484A/NS 1 2 99 50 40 * CAUTION: SET .OPTIONS GMIN=1E-16 TO CORRECTLY MODEL INPUT BIAS CURRENT. * *Features: *Operates from single or dual supplies *Rail-to-rail input and output swing *Ultra low input current = 10fA *Slew rate = 1.2V/uS * *NOTE: Model is for single device only and simulated * supply current is 1/4 of total device current. * Noise is not modeled. * Asymmetrical gain is not modeled. * **INPUT STAGE**** * I1 99 4 17U M1 5 2 4 99 MOSFET R3 5 50 5.651K M2 6 7 4 99 MOSFET R4 6 50 5.651K *Fp2=5.9 MHz C4 5 6 2.3868P G0 98 9 6 5 4.4165E-2 R0 98 9 1K DP1 1 99 DA DP2 50 1 DB DP3 2 99 DB DP4 50 2 DA *For accurate Ib , set GMIN<=1E-16 on .OPTIONS line. * *COMMON MODE EFFECT* * I2 99 50 420.5U *^Quiescent current EOS 7 1 POLY(1) 16 49 .75E-3 1 *Offset voltage..........^ R8 99 49 40K R9 49 50 40K * POLE STAGE * *Fp=13.3 MHz G3 98 15 9 49 1E-3 R12 98 15 1K C5 98 15 11.967P * **POLE/ZERO STAGE*** * *Fp=600 KHz, Fz= 1.4MHz G5 98 18 15 49 1E-3 R14 98 18 1K R15 98 19 750 C6 19 18 151.58P * ****COMMON-MODE ZERO STAGE**** * *Fpcm=20 KHz G4 98 16 POLY(2) 1 49 2 49 0 2.812E-8 2.812E-8 L2 98 17 7.958M R13 17 16 1K * ****SECOND STAGE**** * EH 99 98 99 49 1 G1 98 29 18 49 5.6667E-6 R5 98 29 100.37MEG V2 99 8 1.56 D1 29 8 DX D2 10 29 DX V3 10 50 1.56 * ****OUTPUT STAGE**** * F6 99 50 VA7 1 *^Dynamic supply current F5 99 35 VA8 1 D3 36 35 DX VA7 99 36 0 D4 35 99 DX E1 99 37 99 49 1 VA8 37 38 0 G6 38 40 49 29 16.667E-3 R16 38 40 2.3886K V4 30 40 .77 D5 30 99 DX V5 40 31 .77 D6 50 31 DX *Fp1=2.343 Hz C3 29 39 17P R6 39 40 1K * MODELS USED**** * .MODEL DA D(IS=2E-14) .MODEL DB D(IS=1E-14) .MODEL DX D(IS=1E-14) .MODEL MOSFET PMOS(VTO=0 KP=1.842E-3) .ENDS *$ |
Re: Third party model usage - please help
--- In LTspice@..., Jim Stockton <mstech@p...> wrote:
kaplounovski wrote:LMC6484A.sub. withThen I created a simple test schematic where I used opamp2 symbol 6484a.subPrefix = X, Spice Model = LMC6484A.sub, Value = LMC6484A.sub
Thank you, Jim. I tried that, with the same outcome. This is how it was done in the old DOS-based PSpice, it worked there. I'm almost sure it's something really simple, like missing path or something, but what? Could it be that the op-amp's subcircuit in turn includes some models, namely MOSFET, that LTSpice could not find? Regards, Eugene |
Re: More on Burr Brown Models
Andre,
makes me wonder if there is any way to start aNo this isn't possible in LTspice. It's pretty hard to implement. What you can do, to help with your confidence in the solution from a .ac analysis, is to do a .step set of runs that varies some aspect of the dc operating point and see if the .ac small signal transfer function looks the same for all those slightly different .op points. I had that problem too, but in myYes, e.g., power amplifier stability is really difficult to do reliably in small signal .ac analysis. The open loop gain/phase varies wildly with output stage operating point. One method that helps in this situation is to drive the amp to one end or the other with a DC input source and insert a floating AC source in the loop in front of a high impedance point for an .ac analysis. The open loop transfer function can be obtained from the ratio of voltages to either side of the floating source. But ultimately, the .tran analysis comes out at the ultimate SPICE test of stability. Best Regards, --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Hi Mike,
Helmut,makes me wonder if there is any way to start a transient simulation,[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable stop at some predefined point in time and use that result for the ac simulation. I had that problem too, but in my designs i almost only rely on transient simulation (for the exact same reason that you mentioned above and because large signals change the operating point anyways). Andre |
Re: More on Burr Brown Models
the latest revision 2.01o now runs my test circuitYes, I was able to reduce gmin to 1e-11, though. Was this change coming from the missed JFETApparently so, now the MOSFET's leak more. BTW, the model, since it uses current sources, should probably be run with the "Add GMIN across current sources" hack because the model was written for PSpice. From the notes written in the model, it looks like PSpice had a hard time with it, too. BTW, I'm thinking of introducing opamp models that use a different modeling methodology, similar to that used for LTspice's SMPS products. The result would be computationally extremely lightweight and robust models that model noise too(these PSpice- style opamp models almost never get the noise modeled). However, the opamps models would not run in other SPICE simulators and non-LT opamp models wouldn't be available. Would you folks be interested in something like that? --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
--- In LTspice@..., Panama Mike <panamatex@y...> wrote:
Helmut,Hello Mike,[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable the latest revision 2.01o now runs my test circuit for the OPA336 without the 'gmin' hack, but the line .OPTIONS gmin=1e-10 noopiter=1 is still necessary. Was this change coming from the missed JFET parameter? Best Regards Helmut |
Re: More on Burr Brown Models
I wrote:
[...] I suggest either removing and askingbut meant: [...] I suggest either removing vfb=... from the models or just ignoring the error message and then asking TI/Burr-Brown why the error is in the model. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Helmut,
[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable than the .op solution. SPICE programs are prone to "false convergence", a numerical situation in which the error-based checks accept an answer which is nonsense. This can happen once and through off a .op solution, but it *rarely* will happen repeatably in the .tran solution. The .ac solution is thereby somewhat suspect because it is based solely on the .op solution. But as far as better convergence with respect to giving up due to convergence errors(not counting accepting false answers), the .tran has only one advantage, it can start simulation without a .op solution while the .ac cannot. But normally both need the .op solution. For the .ac analysis, there is basically no further possibility of convergence failures after the .op, because everything after that is an exact solution of the linearized circuit. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Steve,
Thanks for the link. OK, here's the story.I am trying to run a Burr Brown Op Amp, theI couldn't find this model. Can you send it to me. Jssw is a perimeter-based bulk leakage current parameter. The MOSFET models in the the macro model are written such that the bulk leakage is dominated by the source and drain perimeters, not that I think that has much to do with the overall behavior of the macromodel. I have implemented jssw in LTspice and it is now available now as version 2.01o. Thank you very much for the test case that pointed it out that jssw was missing. However, Vfb is not a level 3 MOSFET parameter. PSpice accepts it, but does apparently nothing with it. LTspice will still complain, which is okay I think because it is an error in the model. I suggest either removing and asking TI/Burr-Brown why the error is in the model. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
to navigate to use esc to dismiss