Keyboard Shortcuts
ctrl + shift + ? :
Show all keyboard shortcuts
ctrl + g :
Navigate to a group
ctrl + shift + f :
Find
ctrl + / :
Quick actions
esc to dismiss
Likes
- LTspice
- Messages
Search
Re: Third party model usage - please help
--- In LTspice@..., "Helmut Sennewald"
<helmutsennewald@y...> wrote: --- In LTspice@..., "kaplounovski" <kaplounovski@y...>LTSpice. netlist.symbolLMC6484A.sub.I've downloaded their model and placed it thethe .sub6484a.sub toold DOS-based PSpice, it worked there. I'm almost sure it'ssomethingreally simple, like missing path or something, but what? Could itbethat the op-amp's subcircuit in turn includes some models, namely go work.*///////////////////////////////////////////////////////////////////// * Legal Notice: This material is intended for free software support.*//////////////////////////////////////////////////////////////////// * For ordering or technical information on these models, contact:Thank you Helmut! It works now, although when I used your model, I got the "Too few nodes: current" message. I did not use your example file because of the different file structure (paths) on my computer. All worked well though with the model I downloaded from the National site yesterday. Now I guess I know where my error was - I tried to use a ready symbol from the library whereas I should have created my own for each 'new' part I want to use. Best regards, Eugene |
Re: More on Burr Brown Models
Reinier Gerritsen
toggle quoted message
Show quoted text
-----Original Message-----
From: Panama Mike [mailto:panamatex@...] BTW, I'm thinking of introducing opamp models that use a different modeling methodology, similar to that used for LTspice's SMPS products. The result would be computationally extremely lightweight and robust models that model noise too(these PSpice- style opamp models almost never get the noise modeled). However, the opamps models would not run in other SPICE simulators and non-LT opamp models wouldn't be available. Would you folks be interested in something like that? --Mike Hi Mike, Sounds interesting. Could you also make a very simple opamp with the output voltage limited to the supply voltages? I sometimes get Mega Volts in my circuit on 1 Volt transients at the inputs. Reinier Gerritsen |
Re: Third party model usage - please help
--- In LTspice@..., "kaplounovski" <kaplounovski@y...>
wrote: --- In LTspice@..., Jim Stockton <mstech@p...> wrote:symbolkaplounovski wrote:LMC6484A.sub. withthe .sub6484a.subPrefix = X, Spice Model = LMC6484A.sub, Value = LMC6484A.sub somethingGood LuckThank you, Jim. really simple, like missing path or something, but what? Could itbe that the op-amp's subcircuit in turn includes some models, namely Hello Eugene, this is one of the two chances to include your moddel. You can see the other one in the thread about the OPA336. Sorry for my short explanations. I must immediately leave my home to go work. Put the symbol file into the LTSPICE lib\sym\opamp directory. Put the model file National.lib into LTSPICE lib\sub directory. Best Regards Helmut Test circuit file Version 4 SHEET 1 1372 1316 WIRE 320 320 320 352 WIRE 320 256 320 224 WIRE -16 368 -16 304 WIRE -16 96 80 96 WIRE 80 304 -16 304 WIRE 160 304 240 304 WIRE 160 96 240 96 WIRE 288 272 240 272 WIRE 240 272 240 96 WIRE 464 96 512 96 WIRE 512 96 512 288 WIRE 512 288 352 288 WIRE -16 480 -16 448 WIRE 240 480 240 512 WIRE 384 480 384 512 WIRE 240 592 240 624 WIRE 384 592 384 624 WIRE 512 288 544 288 WIRE 240 96 384 96 WIRE 240 304 288 304 WIRE 320 976 320 1008 WIRE 320 912 320 880 WIRE -16 752 96 752 WIRE 80 960 -16 960 WIRE 160 960 240 960 WIRE 160 752 240 752 WIRE 288 928 240 928 WIRE 240 928 240 752 WIRE 464 752 512 752 WIRE 512 752 512 944 WIRE 512 944 352 944 WIRE 512 944 544 944 WIRE 240 752 384 752 WIRE 240 960 288 960 WIRE -16 1024 -16 960 WIRE -16 1136 -16 1104 FLAG 320 224 Vcc FLAG 240 480 Vcc FLAG 384 480 Vss FLAG 320 352 Vss FLAG -16 480 0 FLAG 240 624 0 FLAG 384 624 0 FLAG 544 288 out FLAG 240 96 in- FLAG 240 304 in+ FLAG -16 96 0 FLAG 320 880 Vcc FLAG 320 1008 Vss FLAG 544 944 out1 FLAG 240 752 in1- FLAG 240 960 in1+ FLAG -16 752 0 FLAG -16 304 in FLAG -16 1136 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 240 496 R0 SYMATTR InstName V1 SYMATTR Value 5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 384 496 R0 SYMATTR InstName V2 SYMATTR Value -5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 352 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V3 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R1 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 320 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R2 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R3 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 768 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R4 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 976 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R5 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\cap 96 768 R270 WINDOW 0 32 32 VTop 0 WINDOW 3 0 32 VBottom 0 SYMATTR InstName C1 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 1008 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V4 SYMATTR Value 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\Opamps\LMC6484A 320 224 R0 SYMATTR InstName U1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\Opamps\LMC6484A 320 880 R0 SYMATTR InstName U2 TEXT -432 40 Left 0 ;.op TEXT -440 -160 Left 0 !.AC DEC 100 1 100MEG TEXT -432 -40 Left 0 ;.nodeset V(out)=2 V(in-)=1 V(in+)=1 TEXT -432 -8 Left 0 ;.nodeset V(out1)=0 V(in1-)=0 V(in1+)=0 TEXT -432 -88 Left 0 ;.OPTIONS gmin=1e-10 noopiter=1 Symbol file LMC6484AA.asy Version 4 SymbolType CELL LINE Normal -32 32 32 64 LINE Normal -32 96 32 64 LINE Normal -32 32 -32 96 LINE Normal -28 48 -20 48 LINE Normal -28 80 -20 80 LINE Normal -24 84 -24 76 LINE Normal 0 32 0 48 LINE Normal 0 96 0 80 LINE Normal 4 44 12 44 LINE Normal 8 40 8 48 LINE Normal 4 84 12 84 WINDOW 0 16 32 Left 0 WINDOW 3 16 96 Left 0 SYMATTR Value LMC6484A/NS SYMATTR Prefix X SYMATTR SpiceModel National.lib SYMATTR Value2 LMC6484A/NS SYMATTR Description CMOS Operational Amplifier PIN -32 80 NONE 0 PINATTR PinName In+ PINATTR SpiceOrder 1 PIN -32 48 NONE 0 PINATTR PinName In- PINATTR SpiceOrder 2 PIN 0 32 NONE 0 PINATTR PinName V+ PINATTR SpiceOrder 3 PIN 0 96 NONE 0 PINATTR PinName V- PINATTR SpiceOrder 4 PIN 32 64 NONE 0 PINATTR PinName OUT PINATTR SpiceOrder 5 File national.lib * National Semiconductor, Inc. *///////////////////////////////////////////////////////////////////// * Legal Notice: This material is intended for free software support. * The file may be copied, and distributed; however, reselling the * material is illegal *//////////////////////////////////////////////////////////////////// * For ordering or technical information on these models, contact: * National Semiconductor's Customer Response Center * 7:00 A.M.--7:00 P.M. U.S. Central Time * (800) 272-9959 * For Applications support, contact the Internet address: * amps-apps@... *////////////////////////////////////////////////////////// *LMC6484A CMOS Quad OP-AMP MACRO-MODEL *////////////////////////////////////////////////////////// * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | * | | | | | .SUBCKT LMC6484A/NS 1 2 99 50 40 * CAUTION: SET .OPTIONS GMIN=1E-16 TO CORRECTLY MODEL INPUT BIAS CURRENT. * *Features: *Operates from single or dual supplies *Rail-to-rail input and output swing *Ultra low input current = 10fA *Slew rate = 1.2V/uS * *NOTE: Model is for single device only and simulated * supply current is 1/4 of total device current. * Noise is not modeled. * Asymmetrical gain is not modeled. * **INPUT STAGE**** * I1 99 4 17U M1 5 2 4 99 MOSFET R3 5 50 5.651K M2 6 7 4 99 MOSFET R4 6 50 5.651K *Fp2=5.9 MHz C4 5 6 2.3868P G0 98 9 6 5 4.4165E-2 R0 98 9 1K DP1 1 99 DA DP2 50 1 DB DP3 2 99 DB DP4 50 2 DA *For accurate Ib , set GMIN<=1E-16 on .OPTIONS line. * *COMMON MODE EFFECT* * I2 99 50 420.5U *^Quiescent current EOS 7 1 POLY(1) 16 49 .75E-3 1 *Offset voltage..........^ R8 99 49 40K R9 49 50 40K * POLE STAGE * *Fp=13.3 MHz G3 98 15 9 49 1E-3 R12 98 15 1K C5 98 15 11.967P * **POLE/ZERO STAGE*** * *Fp=600 KHz, Fz= 1.4MHz G5 98 18 15 49 1E-3 R14 98 18 1K R15 98 19 750 C6 19 18 151.58P * ****COMMON-MODE ZERO STAGE**** * *Fpcm=20 KHz G4 98 16 POLY(2) 1 49 2 49 0 2.812E-8 2.812E-8 L2 98 17 7.958M R13 17 16 1K * ****SECOND STAGE**** * EH 99 98 99 49 1 G1 98 29 18 49 5.6667E-6 R5 98 29 100.37MEG V2 99 8 1.56 D1 29 8 DX D2 10 29 DX V3 10 50 1.56 * ****OUTPUT STAGE**** * F6 99 50 VA7 1 *^Dynamic supply current F5 99 35 VA8 1 D3 36 35 DX VA7 99 36 0 D4 35 99 DX E1 99 37 99 49 1 VA8 37 38 0 G6 38 40 49 29 16.667E-3 R16 38 40 2.3886K V4 30 40 .77 D5 30 99 DX V5 40 31 .77 D6 50 31 DX *Fp1=2.343 Hz C3 29 39 17P R6 39 40 1K * MODELS USED**** * .MODEL DA D(IS=2E-14) .MODEL DB D(IS=1E-14) .MODEL DX D(IS=1E-14) .MODEL MOSFET PMOS(VTO=0 KP=1.842E-3) .ENDS *$ |
Re: Third party model usage - please help
--- In LTspice@..., Jim Stockton <mstech@p...> wrote:
kaplounovski wrote:LMC6484A.sub. withThen I created a simple test schematic where I used opamp2 symbol 6484a.subPrefix = X, Spice Model = LMC6484A.sub, Value = LMC6484A.sub
Thank you, Jim. I tried that, with the same outcome. This is how it was done in the old DOS-based PSpice, it worked there. I'm almost sure it's something really simple, like missing path or something, but what? Could it be that the op-amp's subcircuit in turn includes some models, namely MOSFET, that LTSpice could not find? Regards, Eugene |
Re: More on Burr Brown Models
Andre,
makes me wonder if there is any way to start aNo this isn't possible in LTspice. It's pretty hard to implement. What you can do, to help with your confidence in the solution from a .ac analysis, is to do a .step set of runs that varies some aspect of the dc operating point and see if the .ac small signal transfer function looks the same for all those slightly different .op points. I had that problem too, but in myYes, e.g., power amplifier stability is really difficult to do reliably in small signal .ac analysis. The open loop gain/phase varies wildly with output stage operating point. One method that helps in this situation is to drive the amp to one end or the other with a DC input source and insert a floating AC source in the loop in front of a high impedance point for an .ac analysis. The open loop transfer function can be obtained from the ratio of voltages to either side of the floating source. But ultimately, the .tran analysis comes out at the ultimate SPICE test of stability. Best Regards, --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Hi Mike,
Helmut,makes me wonder if there is any way to start a transient simulation,[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable stop at some predefined point in time and use that result for the ac simulation. I had that problem too, but in my designs i almost only rely on transient simulation (for the exact same reason that you mentioned above and because large signals change the operating point anyways). Andre |
Re: More on Burr Brown Models
the latest revision 2.01o now runs my test circuitYes, I was able to reduce gmin to 1e-11, though. Was this change coming from the missed JFETApparently so, now the MOSFET's leak more. BTW, the model, since it uses current sources, should probably be run with the "Add GMIN across current sources" hack because the model was written for PSpice. From the notes written in the model, it looks like PSpice had a hard time with it, too. BTW, I'm thinking of introducing opamp models that use a different modeling methodology, similar to that used for LTspice's SMPS products. The result would be computationally extremely lightweight and robust models that model noise too(these PSpice- style opamp models almost never get the noise modeled). However, the opamps models would not run in other SPICE simulators and non-LT opamp models wouldn't be available. Would you folks be interested in something like that? --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
--- In LTspice@..., Panama Mike <panamatex@y...> wrote:
Helmut,Hello Mike,[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable the latest revision 2.01o now runs my test circuit for the OPA336 without the 'gmin' hack, but the line .OPTIONS gmin=1e-10 noopiter=1 is still necessary. Was this change coming from the missed JFET parameter? Best Regards Helmut |
Re: More on Burr Brown Models
I wrote:
[...] I suggest either removing and askingbut meant: [...] I suggest either removing vfb=... from the models or just ignoring the error message and then asking TI/Burr-Brown why the error is in the model. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Helmut,
[...]I have read in a book? that .TRAN analysisThe .tran solution is always more believable than the .op solution. SPICE programs are prone to "false convergence", a numerical situation in which the error-based checks accept an answer which is nonsense. This can happen once and through off a .op solution, but it *rarely* will happen repeatably in the .tran solution. The .ac solution is thereby somewhat suspect because it is based solely on the .op solution. But as far as better convergence with respect to giving up due to convergence errors(not counting accepting false answers), the .tran has only one advantage, it can start simulation without a .op solution while the .ac cannot. But normally both need the .op solution. For the .ac analysis, there is basically no further possibility of convergence failures after the .op, because everything after that is an exact solution of the linearized circuit. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
Steve,
Thanks for the link. OK, here's the story.I am trying to run a Burr Brown Op Amp, theI couldn't find this model. Can you send it to me. Jssw is a perimeter-based bulk leakage current parameter. The MOSFET models in the the macro model are written such that the bulk leakage is dominated by the source and drain perimeters, not that I think that has much to do with the overall behavior of the macromodel. I have implemented jssw in LTspice and it is now available now as version 2.01o. Thank you very much for the test case that pointed it out that jssw was missing. However, Vfb is not a level 3 MOSFET parameter. PSpice accepts it, but does apparently nothing with it. LTspice will still complain, which is okay I think because it is an error in the model. I suggest either removing and asking TI/Burr-Brown why the error is in the model. --Mike __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
Re: More on Burr Brown Models
--- In LTspice@..., "polapart" <sahawley@m...> wrote:
--- polapart <sahawley@m...> wrote:Hello Steve,I am trying to run a Burr Brown Op Amp, the OPA336.I couldn't find this model. Can you send it to me. the magic trick for the convergence problem in .AC analysis is the latest 'gnin parallel current source' feature. That was the only way I found to get convergence in .AC analysis for this OPAMP. Enable this feature in the control panel. Control Panel->Hacks-> Add GMIN across current sorce But this alone doesn't help. We have to add the command line .OPTIONS gmin=1e-10 noopiter=1 into the schematic. I have read in a book? that .TRAN analysis always does converge better. Hello Mike, is that true? Unfortunately this doesn't help anything when somebody has to make a .AC analysis. What's about this error message regarding JFET parameters? Error on line 61 : .model nch nmos (level=3 tox=30e-9 cgdo=1.55e-10 cgso=1.55e-10 cj=6.300e-4 cjsw=3.83e-10 af=1.05 kf=2.6e-31 js=2.0e-7 jssw=5e-13 rsh=68 mj=.25 mjsw=.11 vfb=-0.784 phi=0.792 vto=.81 ld=34e- 9 wd=17e-9 tpg=-1 gamma=0.6) Unrecognized parameter "jssw" - ignored Unrecognized parameter "vfb" - ignored Error on line 60 : .model pch pmos (level=3 tox=30e-9 cgdo=1.80e-10 cgso=1.80e-10 cj=7.199e-4 cjsw=3.40e-10 af=1.05 kf=1.0e-31 js=4.0e-7 jssw=3.0e-13 rsh=117 mj=.47 mjsw=.16 vfb=-0.34 phi=0.71 vto=-.892 ld=12e-9 wd=43e-9 tpg=+1 gamma=0.6) Unrecognized parameter "jssw" - ignored Unrecognized parameter "vfb" - ignored I have my test files attached. Best Regards Helmut The LTSPICE file for .AC analysis. Version 4 SHEET 1 1372 1316 WIRE 320 320 320 352 WIRE 320 256 320 224 WIRE -16 368 -16 304 WIRE -16 96 80 96 WIRE 80 304 -16 304 WIRE 160 304 240 304 WIRE 160 96 240 96 WIRE 288 272 240 272 WIRE 240 272 240 96 WIRE 464 96 512 96 WIRE 512 96 512 288 WIRE 512 288 352 288 WIRE -16 480 -16 448 WIRE 240 480 240 512 WIRE 384 480 384 512 WIRE 240 592 240 624 WIRE 384 592 384 624 WIRE 512 288 544 288 WIRE 240 96 384 96 WIRE 240 304 288 304 WIRE 320 976 320 1008 WIRE 320 912 320 880 WIRE -16 752 96 752 WIRE 80 960 -16 960 WIRE 160 960 240 960 WIRE 160 752 240 752 WIRE 288 928 240 928 WIRE 240 928 240 752 WIRE 464 752 512 752 WIRE 512 752 512 944 WIRE 512 944 352 944 WIRE 512 944 544 944 WIRE 240 752 384 752 WIRE 240 960 288 960 WIRE -16 1024 -16 960 WIRE -16 1136 -16 1104 FLAG 320 224 Vcc FLAG 240 480 Vcc FLAG 384 480 Vss FLAG 320 352 Vss FLAG -16 480 0 FLAG 240 624 0 FLAG 384 624 0 FLAG 544 288 out FLAG 240 96 in- FLAG 240 304 in+ FLAG -16 96 0 FLAG 320 880 Vcc FLAG 320 1008 Vss FLAG 544 944 out1 FLAG 240 752 in1- FLAG 240 960 in1+ FLAG -16 752 0 FLAG -16 304 in FLAG -16 1136 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\x_models\xopamp 320 224 R0 SYMATTR InstName U1 SYMATTR Value OPA336 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 240 496 R0 SYMATTR InstName V1 SYMATTR Value 2.5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 384 496 R0 SYMATTR InstName V2 SYMATTR Value -2.5 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 352 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V3 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R1 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 320 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R2 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 112 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R3 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\x_models\xopamp 320 880 R0 SYMATTR InstName U2 SYMATTR Value OPA336 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 368 768 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R4 SYMATTR Value 1MEG SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\res 64 976 R270 WINDOW 0 32 56 VTop 0 WINDOW 3 0 56 VBottom 0 SYMATTR InstName R5 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\cap 96 768 R270 WINDOW 0 32 32 VTop 0 WINDOW 3 0 32 VBottom 0 SYMATTR InstName C1 SYMATTR Value 1 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage -16 1008 R0 WINDOW 123 24 132 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value2 AC 1 SYMATTR InstName V4 SYMATTR Value 0 TEXT -432 40 Left 0 ;.op TEXT -432 -128 Left 0 !.include opa336.mod TEXT -440 -160 Left 0 !.AC DEC 100 1 100MEG TEXT -432 -40 Left 0 !.nodeset V(out)=2 V(in-)=1 V(in+)=1 TEXT -400 1256 Left 0 ;.OPTIONS vntol=1e-2 reltol=1e-2 itl1=500 itl2=500 itl6=500 abstol=1e-4 gmin=1e-9 gminsteps=100 noopiter=1 pivtol=1e-6 TEXT -432 -8 Left 0 !.nodeset V(out1)=0 V(in1-)=0 V(in1+)=0 TEXT -432 -88 Left 0 !.OPTIONS gmin=1e-10 noopiter=1 TEXT -400 1288 Left 0 ;.OPTIONS itl1=500 itl2=500 itl6=500 vntol=1e- 3 abstol=1e-12 reltol=1e-3 trtol=1 pivtol=1e-13 pivrel=1e-3 gmin=1e- 12 gminsteps=100 noopiter=1 The model OPA336.mod: Be carefully with the broken lines I see in this awful YAHOO-editor. * ------------------------------------------------------------------- ----- * | NOTICE: THE INFORMATION PROVIDED HEREIN IS BELIEVED TO BE RELIABLE; | * | HOWEVER; BURR-BROWN ASSUMES NO RESPONSIBILITY FOR INACCURACIES OR | * | OMISSIONS. BURR-BROWN ASSUMES NO RESPONSIBILITY FOR THE USE OF THIS | * | INFORMATION, AND ALL USE OF SUCH INFORMATION SHALL BE ENTIRELY AT | * | THE USER'S OWN RISK. NO PATENT RIGHTS OR LICENSES TO ANY OF THE | * | CIRCUITS DESCRIBED HEREIN ARE IMPLIED OR GRANTED TO ANY THIRD PARTY. | * | BURR-BROWN DOES NOT AUTHORIZE OR WARRANT ANY BURR-BROWN PRODUCT FOR | * | USE IN LIFE-SUPPORT DEVICES AND/OR SYSTEMS. | * ------------------------------------------------------------------- ----- * * * * SUBCIRCUIT MACROMODEL OPA336 * PSpice ver. 6.3 * REV A. CREATED Wednesday, June 18, 1997 RH * REV B. 25 JUNE 97 NPA: COMPILED INTO OPA336.MOD * REV C. 26 JUNE 97 NPA: EDITED NODE SYNTAX AND ADDED .OPTION NOTES * * Notes concerning using macromodel to simulate OPA336: * 1) Model is actually a simplified schematic of OPA336. * 2) Model was created with PSpice ver. 6.3, level 3 device models. * 3) Operation of the circuit is assumed to be single supply * * Example: X_U1 1 2 3 0 5 OPA336 * * Where U is the subcircuit name and * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | * .subckt OPA336 1 2 3 4 5 * * Note that node "4" may be connected to ground "0", i.e., single supply operation. * * 4) ADD .OPTION ITL=40 AND .OPTION GMIN=10p TO NET LIST IF SIMULATION DOES NOT * CONVERGE * 5) ADDING .NODESET STATEMENT (BELOW) TO NET LIST MAY HELP CONVERGENCE IS CASES * WHERE V+=5V AND V-=0V ; SINGLE SUPPLY OPERATION. ASSUMES SUBCIRCUIT IS "U1". * * .NODESET * +V(2) = 2.5 V(1) = 2.5 V(5) = 2.5 V(3) = 5.0 * +V(X_U1.20)= 3.8 V(X_U1.23)= 3.8 V(X_U1.25)= .834 V(X_U1.27) = .833 V(X_U1.29)= .834 * +V(X_U1.32)= 2.03 V(X_U1.34)= 2.03 V(X_U1.43)= 4.065 V(X_U1.44)= 2.51 V(X_U1.45)= 1.93 * +V(X_U1.47)= 1.93 V(X_U1.51)= .848 V(X_U1.53)= 4.07 V(X_U1.54)= 1.58 V(X_U1.55)= 4.02 * +V(X_U1.60)= 1.94 V(X_U1.62)= .855 V(X_U1.64)= 3.17 V(X_U1.67)= 4.98 V(X_U1.76)= 2.51 * +V(X_U1.GNDS)= 0.0 V(0)= 0.0 * * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt OPA336 1 2 3 4 5 * M61 4 64 55 55 PCH W=20U L=0.8U M=1 M59 55 53 3 3 PCH W=15U L=5U M=4 M55 55 60 51 GNDS NCH W=5U L=0.8U M=1 M53 53 45 51 GNDS NCH W=5U L=0.8U M=1 M57 53 53 3 3 PCH W=15U L=5U M=2 C55 55 60 CP1P2 2P M67 55 55 67 3 PCH W=5U L=5U M=1 M74 45 51 62 GNDS NCH W=5U L=1U M=1 R67 3 67 RNW 200K R47 45 47 RPO2 2K ITAIL 3 23 DC 6U AC 0 ITAIL2 27 4 DC 1.6U AC 0 ITAIL3 51 4 DC 0.8U AC 0 I60 3 60 DC 0.4U AC 0 RGNDS GNDS 4 0.01 M24 29 1 23 3 PCH W=90U L=2U AD=2560P PD=3328U AS=2688P PS=3494U M=1 M26 29 27 4 GNDS NCH W=500U L=2U AD=1142P PD=1670U AS=1142P PS=1670U M=1 I20 20 4 DC 1U AC 0 R20 3 20 1.2MEG M20 4 20 23 3 PCH W=5U L=2U M=1 R32 32 25 1.2MEG R34 34 29 1.2MEG I34 3 34 DC 1U AC 0 I32 3 32 DC 1U AC 0 V64 3 64 DC 1.8302 V60 60 62 DC 1.0897 V62 62 4 DC .8547 M23 25 2 23 3 PCH W=90U L=2U AD=2560P PD=3328U AS=2688P PS=3494U M=1 M47 43 43 3 3 PCH W=60U L=4U M=1 M43 43 34 27 GNDS NCH W=4U L=4U M=1 M45 45 32 27 GNDS NCH W=4U L=4U M=1 M73 76 51 4 GNDS NCH W=5U L=0.8U M=20 M25 25 27 4 GNDS NCH W=500U L=2U AD=1142P PD=1670U AS=1142P PS=1670U M=1 M71 76 55 3 3 PCH W=20U L=0.8U M=20 M49 45 43 3 3 PCH W=60U L=4U M=1 RC1 44 76 RPO2 10K R76 76 5 RPO2 100 CM1 29 44 CP1P2 200P C45 47 76 CP1P2 22P RC2 54 4 RPO2 10K CM2 25 54 CP1P2 200P .ENDS * MODELS for LEVEL 3 PSpice * .MODEL PCH PMOS (LEVEL=3 TOX=30E-9 CGDO=1.80e-10 CGSO=1.80e-10 CJ=7.199E-4 CJSW=3.40E-10 +AF=1.05 KF=1.0e-31 JS=4.0e-7 JSSW=3.0e-13 RSH=117 MJ=.47 MJSW=.16 VFB=-0.34 PHI=0.71 VTO=-.892 +LD=12E-9 WD=43E-9 TPG=+1 GAMMA=0.6) .MODEL NCH NMOS (LEVEL=3 TOX=30E-9 CGDO=1.55e-10 CGSO=1.55e-10 CJ=6.300E-4 CJSW=3.83E-10 +AF=1.05 KF=2.6e-31 JS=2.0e-7 JSSW=5e-13 RSH=68 MJ=.25 MJSW=.11 VFB=- 0.784 PHI=0.792 VTO=.81 +LD=34E-9 WD=17E-9 TPG=-1 GAMMA=0.6) .MODEL RPO2 RES (R=1 TC1=6.3e-4 TC2= 1.1e-6) .MODEL RNW RES (R=1 TC1=5.5e-3 TC2=-1.3e-5) .MODEL CP1P2 CAP (C=1) *.ENDS *.ENDS OPA336 * |
Re: models for triodes and pentodes
--- In LTspice@..., Bill Lewis <wrljet@y...> wrote:
Please post any replies to this question to the list.with Hello Bill,the symbol. you will find the symbol in the "misc" directory. A short description follows: 1. Load the triode symbol into your schematic. 2. Replace the value 'triode' with the model name used in the model file. In this case it is '12AX7A'. 3. Put the model text into a file and store it in your working directory. That is the directory where your schematic is. 4. Add the line .INCLUDE modelfilename in your schematic. That's it. This procedure will work for any kind of part and you can put as many models you want into one file. It is important for any kind of symbol and model that the pin order is matching. Let's take a look to the triode symbol. The provided symbol has the pin order P(1), G(2), K(3). The model text uses .SUBCKT 12AX7A P G K . This means that P is pin-1 G is pin- 2 and K is pin-3. We have luck, the pin order is the same. If it is different, then we could either change the order in the model text or in the symbol. I have the ready to run example files attached. By the way, the model isn't good at low Vpk voltages. Take a look to the Ip(Vgk, Vpk) plot to see what I mean. Best Regards Helmut The model file: triode_12ax7a.sub --------------------------------- * 12AX7A Triode PSpice Model 8/96, Rev. 1.0 (fp) * * ------------------------------------------------------------------- * This model is provided "as is", with no warranty of any kind, * either expressed or implied, about the suitability or fitness * of this model for any particular purpose. Use of this model * shall be entirely at the user's own risk. * * For a discussion about vacuum tube modeling please refer to: * W. Marshall Leach, jr: "SPICE Models for Vacuum-Tube Amplifiers"; * J. Audio Eng. Soc., Vol 43, No 3, March 1995. * ------------------------------------------------------------------- * * This model is valid for the following tubes: * 12AX7A/ECC83, 7025, 6EU7, 6681, 6AV6, 12DW7/7247 (Unit #1); * at the following conditions: * Plate voltage : 25..400V * Grid voltage : 0..-3.5V * Cathode current: 0..8mA * * * Connections: Plate * | Grid * | | Cathode * | | | .SUBCKT 12AX7A P G K E1 2 0 VALUE={45+V(P,K)+95.43*V(G,K)} R1 2 0 1.0K Gp P K VALUE={1.147E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Cgk G K 1.6P Cgp G P 1.7P Cpk P K 0.46P .ENDS 12AX7A.SUBCKT 12AX7A P G K The circuit file: triode_test.asc --------------------------------- Version 4 SHEET 1 1104 692 WIRE 336 384 336 496 WIRE 368 288 368 224 WIRE 368 224 512 224 WIRE 512 336 512 224 WIRE 512 416 512 496 WIRE 512 496 336 496 WIRE 336 496 176 496 WIRE 176 496 176 448 WIRE 176 368 176 336 WIRE 176 336 320 336 WIRE 176 528 176 496 FLAG 176 528 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\Misc\triode 368 336 R0 SYMATTR InstName U1 SYMATTR Value 12AX7A SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 176 352 R0 WINDOW 123 0 0 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V1 SYMATTR Value 0 SYMBOL F:\PROGRAMME\LTC\SWCADIII\lib\sym\voltage 512 320 R0 SYMATTR InstName V2 SYMATTR Value 200V TEXT 142 136 Left 0 !;dc V2 0 200 0.1 V1 -5 20 5 TEXT 136 176 Left 0 !.INCLUDE triode_12ax7a.sub TEXT 592 136 Left 0 ;.dc V2 0 200 0.1 V1 -5 20 5 Ip(Vpk, Vgk) TEXT 144 96 Left 0 !.dc V1 -5 20 0.1 TEXT 592 96 Left 0 ;.dc V1 -5 20 0.1 Ip(Vgk) |
Re: Third party model usage - please help
Jim Stockton
kaplounovski wrote:
Try leaving model blank and using value = lmc6484a without the .sub Good Luck Jim Stockton |
Third party model usage - please help
Hello,
I'm trying to use the National LMC6484A opamp model in LTSpice. I've downloaded their model and placed it into ..\LTC\SWCADIII\lib\sub directory under the name LMC6484A.sub. Then I created a simple test schematic where I used opamp2 symbol with Prefix = X, Spice Model = LMC6484A.sub, Value = LMC6484A.sub properties. I've also added the .inc LMC6484A.sub directive to the netlist. Running the simulation produces the following error message: Error: Unknown subckt called in: xu1 ...... lmc6484a.sub lmc 6484a.sub What am I doing wrong? Thanks, Eugene. |
Re: models for triodes and pentodes
Bill Lewis
Please post any replies to this question to the list.
I'm interested in vacuum tube modeling. Thanks, Bill --- guille_bonh <guille_bonh@...> wrote: I'd appreciate any help on modeling valves. __________________________________________________ Do you Yahoo!? Yahoo! Platinum - Watch CBS' NCAA March Madness, live on your desktop! |
models for triodes and pentodes
I'd appreciate any help on modeling valves.
For example, I copy what I have for the triode 12AX7A: * 12AX7A Triode PSpice Model 8/96, Rev. 1.0 (fp) * * ------------------------------------------------------------------- * This model is provided "as is", with no warranty of any kind, * either expressed or implied, about the suitability or fitness * of this model for any particular purpose. Use of this model * shall be entirely at the user's own risk. * * For a discussion about vacuum tube modeling please refer to: * W. Marshall Leach, jr: "SPICE Models for Vacuum-Tube Amplifiers"; * J. Audio Eng. Soc., Vol 43, No 3, March 1995. * ------------------------------------------------------------------- * * This model is valid for the following tubes: * 12AX7A/ECC83, 7025, 6EU7, 6681, 6AV6, 12DW7/7247 (Unit #1); * at the following conditions: * Plate voltage : 25..400V * Grid voltage : 0..-3.5V * Cathode current: 0..8mA * * * Connections: Plate * | Grid * | | Cathode * | | | .SUBCKT 12AX7A P G K E1 2 0 VALUE={45+V(P,K)+95.43*V(G,K)} R1 2 0 1.0K Gp P K VALUE={1.147E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Cgk G K 1.6P Cgp G P 1.7P Cpk P K 0.46P .ENDS 12AX7A.SUBCKT 12AX7A P G K E1 2 0 VALUE={45+V(P,K)+95.43*V(G,K)} R1 2 0 1.0K Gp P K VALUE={1.147E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Cgk G K 1.6P Cgp G P 1.7P Cpk P K 0.46P ... and the obvious question: How do I relate the previous info with the symbol. Thanks in advance, Guillermo |
Re: More on Burr Brown Models
polapart
--- polapart <sahawley@m...> wrote:
I am trying to run a Burr Brown Op Amp, the OPA336.I couldn't find this model. Can you send it to me. --Mike Here's the link to the TI page. Thanks genericPartNumber=OPA336&pfsection=models Steve H |
Re: Defining expressions for resistor values
Jonathan Kirwan
By the way, here's my .ASC file. Sadly,
By the way, I'm including my .ASC version as an attachment. If that doesn't work in these posts, I'll just add it as text (but the darned word-wrapping will probably mess it up.) In this example, what I'd like to do is set up R2 as an equation so that it is calculated. But I do *not* want to have to estimate Vbe. I want to use the exact value, computed by LT Spice, if possible. Since LT Spice must be using matrices to simulate, I figure it should be able to solve for the necessary values. But I don't know. Thanks! Jon |
Re: Defining expressions for resistor values
Jonathan Kirwan
On Tue, 18 Mar 2003 15:21:56 -0800 (PST), you wrote:
Thanks, I took a look at that. But it uses a set Vbe, which II'm interested in calculating iterative values forThe .asc file below might get you started there. have to estimate beforehand and then measure and then re-edit into the .param and then re-run and then re-measure and ... I was wondering if there was a way to enter into an expression the equivalent of: V(N001,N003). Or some-such. Possible? Or am I stuck iterating to a solution, manually? Jon |
to navigate to use esc to dismiss